Ca2+ binding effects on the C2 domain conformation of human cytosolic phospholipase A2.

نویسندگان

  • Bo Tan
  • San-Bo Qin
  • Meng-En Chen
  • Huai-Xing Cang
  • Hong-Jie Zhang
چکیده

It has been reported that the cooperative binding of calcium ions indicated a local conformational change of the human cytosolic phospholipase A2 (cPLA2) C2 domain (Nalefski et al., (1997) Biochemistry 36, 12011-12018). However its structural evidence is less known (Malmberg et al., (2003) Biochemistry 42, 13227-13240). In this letter, life-time decay and fluorescence quenching techniques were employed to compare the calcium-induced conformational changes. The life-time decay parameters and fluorescence quenching constant changes were small between the apo- and holo-C2 domains when tryptophan residue was excited at 295 nm. In contrast, the quenching constant change was large, from 0.52 M(-1) for the apo-C2 to 8.8 M(-1) for the holo-C2 domain, when tyrosine residues were excited at 284 nm. Our results provide new information on amino acid side chain orientation change at calcium binding loop 3, which is necessary for Ca2+ binding regulated membrane targeting of human cytosolic phospholipase A2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-dependent and -independent interfacial binding and catalysis of cytosolic group IV phospholipase A2.

Cytosolic group IV phospholipase A2 (cPLA2) plays a role in liberating arachidonic acid from the sn-2 position of mammalian cellular phospholipids. The enzyme consists of a catalytic domain joined to an N-terminal calcium-dependent, membrane binding domain (C2 domain). The interfacial binding properties of the full-length, nonphosphorylated enzyme and its C2 domain to phospholipid vesicles were...

متن کامل

Essential Ca -independent Role of the Group IVA Cytosolic Phospholipase A2 C2 Domain for Interfacial Activity*□S

The cytosolic Group IVA phospholipase A2 (GIVAPLA2) translocates to intracellular membranes to catalyze the release of lysophospholipids and arachidonic acid. GIVAPLA2 translocation and subsequent activity is regulated by its Ca -dependent phospholipid binding C2 domain. Phosphatidylinositol 4,5-bisphosphate (PI-4,5P2) also binds with high affinity and specificity to GIVAPLA2, facilitating memb...

متن کامل

C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity.

The ubiquitous C2 domain is a conserved Ca2+ triggered membrane-docking module that targets numerous signaling proteins to membrane surfaces where they regulate diverse processes critical for cell signaling. In this study, we quantitatively compared the equilibrium and kinetic parameters of C2 domains isolated from three functionally distinct signaling proteins: cytosolic phospholipase A2-alpha...

متن کامل

Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically.

C2 domains have been identified in a wide range of intracellular proteins, including lipid modifying enzymes, protein kinases, GTPases, and proteins involved in membrane trafficking. Many C2 domains bind membranes in a calcium-dependent manner. The first C2 domain from synaptotagmin I (SytIC2A) and the C2 domain from cytosolic phospholipase A2 (cPLA2C2) are among the best characterized C2 domai...

متن کامل

Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2.

Cytosolic phospholipase A2 (cPLA2) plays a key role in the generation of arachidonic acid, a precursor of potent inflammatory mediators. Intact cPLA2 is known to translocate in a calcium-dependent manner from the cytosol to the nuclear envelope and endoplasmic reticulum. We show here that the C2 domain of cPLA2 alone is sufficient for this calcium-dependent translocation in living cells. We hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein and peptide letters

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2006